วันเสาร์ที่ 8 ธันวาคม พ.ศ. 2555

มาตรฐาน IEEE



มาตรฐาน IEEE
IEEE คืออะไร
            IEEE คือ สถาบันวิศวกรรมไฟฟ้าและวิศวกรรมอิเล็กทรอนิกส์นานาชาติ ชื่อเต็มคือ Institute of Electrical and Electronic Engineers ก่อตั้งขึ้นเมื่อปี ..1963 ในประเทศสหรัฐอเมริกา โดยการรวมตัวของวิศวกรไฟฟ้าและวิศวกรอิเล็กทรอนิกส์ ซึ่งดำเนินกิจกรรมร่วมกันวิจัยและพัฒนาเทคโนโลยีด้านโทรคมนาคม ระบบไฟฟ้ากำลัง และระบบแสง
สถาบัน IEEE เป็นสถาบันที่กำกับ ดูแลมาตรฐานวิจัยและพัฒนาความรู้และงานวิจัยใหม่ๆตลอดจนเผยแพร่ความรู้ โดยเน้นด้านไฟฟ้ากำลัง คอมพิวเตอร์ โทรคมนาคม ระบบอิเล็กทรอนิกส์ระบบวัดคุม โดยนักวิจัยเหล่านี้มีอยู่ทั่วโลก และจะแบ่งกลุ่มศึกษาตามความเชี่ยวชาญของแต่ละบุคคล กลุ่มหมายเลขIEEE ที่ได้รับการยอมรับจากองค์กรควบคุมมาตรฐาน

มาตรฐาน IEEE แบ่งออกได้ดังนี้


IEEE 802.1 การบริหารจัดการระบบเครือข่าย
IEEE 802.2 ถูกออกแบบใน LLC ไม่ต้องการให้เครื่องรู้จักกับ MAC sub layer กับ physical layer
IEEE 802.3 สำหรับเป็น โปรโตคอลมาตรฐานเครือข่าย Ethernet ที่มีอัตราเร็วในการส่งข้อมูล10Mbps
IEEE 802.4 มาตรฐาน IEEE 802.4 เป็นมาตรฐานกำหนดโปรโตคอลสำหรับเลเยอร์ชั้น MAC
IEEE 802.5 เครือข่ายที่ใช้โทโปโลยีแบบ Ring
IEEE 802.6 กำหนดมาตรฐานของ MAN ซึ่งข้อมูลในระบบเครือข่ายถูกออกแบบมาให้ใช้งานในระดับ    เขต และเมือง
IEEE 802.7 ใช้ให้คำปรึกษากับกลุ่มเทคโนโลยีการส่งสัญญาณแบบ Broadband
IEEE 802.8 ใช้ให้คำปรึกษากับกลุ่มเทคโนโลยีเคเบิลใยแก้วนำแสง
IEEE 802.9 ใช้กำหนดการรวมเสียงและข้อมูลบนระบบเครือข่ายรองรับ
IEEE 802.10 ใช้กำหนดความปลอดภัยบนระบบเครือข่าย
IEEE 802.11 ใช้กำหนดมาตรฐานเทคโนโลยีสำหรับ WLAN
IEEE802.12 ใช้กำหนดลำดับความสำคัญของความต้องการเข้าไปใช้งานระบบเครือข่าย
IEEE 802.14 ใช้กำหนดมาตรฐานของสาย Modem
IEEE 802.15 ใช้กำหนดพื้นที่ของเครือข่ายไร้สายส่วนบุคคล
IEEE 802.16 ใช้กำหนดมาตรฐานของ Broadband แบบไร้สาย หรือ WiMAX


IEEE 802.11
          IEEE (Institute of Electrical and Electronic Engineer) ซึ่งเป็นองค์กรที่กำหนดมาตรฐาน
อุตสาหกรรมอิเล็กทรอนิกส์ ได้กำหนดมาตรฐานเครือข่ายไร้สาย โดยใช้การกำหนดตัวเลข 802.11แล้วตามด้วยตัวอักษร เช่น 802.11b, 802.11a, 802.11g และ 802.11n
          IEEE 802.11 คือมาตรฐานการทำงานของระบบเครือข่ายไร้สายกำหนดขึ้นโดย Institute of Electrical and Electronics Engineers (IEEE) เป็นมาตรฐานกลาง ที่ได้นำมาปฏิบัติใช้ในมาตรฐานของการรับ – ส่งข้อมูล โดยอาศัยคลื่นความถี่ ตัวอย่างของการใช้งาน เช่น Wireless Lanหรือ Wi-Fi เพื่อที่จะทำการเชื่อมโยงอุปกรณ์เครือข่ายไร้สายเข้าด้วยกันบนระบบ
          ในทางปกติแล้ว การเชื่อมต่อระบบเครือข่ายไร้สาย จำเป็นต้องใช้อุปกรณ์สองชิ้น นั่นคือ แอคเซสพอยต์ คือ ตัวกลางที่ช่วยในการติดต่อระหว่าง ตัวรับ-ส่งสัญญาญไวเลส ของผู้ใช้ กับ สายนำสัญญาณที่จากทองแดงที่ได้รับการเชื่อมต่อกับระบบเครือข่ายแล้ว เช่น สายแลน  ตัวรับ-ส่งสัญญาณไวเลส ทำหน้าที่รับ-ส่ง สัญญาณ ระหว่างตัวรับส่งแต่ละตัวด้วยกัน หลังจากที่เทคโนโลยีเครือข่ายไร้สายนี้ได้เกิดขึ้น ก็ได้เกิดมาตรฐานตามมาอีกมายมาย โดยที่การจะเลือกซื้อหรือเลือกใช้อุปกรณ์เครือข่ายไร้สายเหล่านั้น เราจำเป็นจะต้องคำนึงถึงเทคโนโลยีที่ใช้ในผลิตภัณฑ์นั้นๆ รวมถึงความเข้ากันได้ของเทคโนโลยีที่ต่างๆ ด้วย

IEEE 802.11a    
เป็นมาตรฐานที่ได้รับการตีพิมพ์และเผยแพร่เมื่อปี .2542 โดยใช้เทคโนโลยี OFDM (Orthogonal Frequency Division Multiplexing) เพื่อพัฒนาให้ผลิตภัณฑ์ไร้สายมีความสามารถในการ รับส่งข้อมูลด้วยอัตราความเร็วสูงสุด 54 เมกะบิตต่อวินาที โดยใช้คลื่นวิทยุย่านความถี่ 5 กิกะเฮิรตซ์ ซึ่งเป็นย่านความถี่ที่ไม่ได้รับอนุญาตให้ใช้งานโดย ทั่วไปในประเทศไทย เนื่องจากสงวนไว้สำหรับกิจการทางด้านดาวเทียม

ข้อเสียของ IEEE 802.11a
          ข้อเสียของผลิตภัณฑ์มาตรฐาน IEEE 802.11a ก็คือ การที่มาตรฐานนี้ ใช้การเชื่อมต่อที่ความถี่สูงๆ ทำให้มาตรฐานนี้ มีระยะการรับส่งที่ค่อนข้างใกล้ คือ ประมาณ 35 เมตร ในโครงสร้างปิด(เช่น ในตึก ในอาคารและ 120 เมตรในที่โล่ง เนื่องด้วยอุปกรณ์ไร้สายที่รองรับเทคโนโลยี IEEE 802.11a มีรัศมีการใช้งานในระยะสั้นและมีราคาแพง ดังนั้นผลิตภัณฑ์ไร้สายมาตรฐาน IEEE 802.11a จึงได้รับความนิยมน้อยและยังไม่สามารถเข้ากันได้กับอุปกรณ์ที่รองรับมาตรฐาน IEEE 802.11b และ IEEE 802.11g อีกด้วย

IEEE 802.11b
          เป็นมาตรฐานที่ถูกตีพิมพ์และเผยแพร่ออกมาพร้อมกับมาตรฐาน IEEE 802.11a เมื่อปี ..2542 มาตรฐาน IEEE 802.11b ได้รับความนิยมในการใช้งานอย่างแพร่หลายมาก ใช้เทคโนโลยีที่เรียกว่า CCK (Complimentary Code Keying) ร่วมกับเทคโนโลยี DSSS (Direct Sequence Spread Spectrum) เพื่อให้สามารถรับส่งข้อมูลได้ด้วยอัตราความเร็วสูงสุดที่ 11 เมกะบิตต่อวินาทีโดยใช้คลื่นสัญญาณวิทยุย่านความถี่ 2.4 กิกะเฮิรตซ์ ซึ่งเป็นย่านความถี่ที่อนุญาตให้ใช้งานในแบบสาธารณะ ทางด้านวิทยาศาสตร์ อุตสาหกรรม และการแพทย์ โดยผลิตภัณฑ์ที่ใช้ความถี่ย่านนี้มีหลายชนิด

ข้อดีของ IEEE 802.11b
          ข้อดีของมาตรฐาน IEEE 802.11b ก็คือ การใช้คลื่นความถี่ที่ต่ำกว่าอุปกรณ์ที่รองรับมาตรฐาน IEEE 802.11a ทำให้อุปกรณ์ที่ใช้มาตรฐานนี้จะมีความสามารถในการส่งคลื่นสัญญาณไปได้ไกลกว่าคือประมาณ 38 เมตรในโครงสร้างปิดและ 140 เมตรในที่โล่งแจ้ง รวมถึง สัญญาณสามารถทะลุทะลวงโครงสร้างตึกได้มากกว่าอุปกรณ์ที่รองรับกับมาตรฐาน IEEE 802.11a ด้วยผลิตภัณฑ์มาตรฐาน IEEE 802.11b เป็นที่รู้จักในเครื่องหมายการค้า Wi-Fi

IEEE 802.11e
       เป็นมาตรฐานที่ออกแบบมาสำหรับการใช้งาน แอพพลิเคชันทางด้านมัลติมีเดียอย่าง VoIP (Voice over IP) เพื่อควบคุมและรับประกันคุณภาพของการ ใช้งานตามหลักการ QoS (Quality of Service) โดยการปรับปรุง MAC Layer ให้มีคุณสมบัติในการรับรองการใช้งานให้มีประสิทธิภาพ

IEEE 802.11f
       มาตรฐานนี้เป็นที่รู้จักกันในนาม IAPP (Inter Access Point Protocol) ซึ่งเป็นมาตรฐานที่ออกแบบมาสำหรับจัดการกับผู้ใช้งานที่เคลื่อนที่ข้ามเขต การให้บริการของ Access Point ตัวหนึ่งไปยัง Access Point อีกตัวหนึ่งเพื่อให้บริการในแบบ โรมมิงสัญญาณระหว่างกัน

มาตรฐาน IEEE 802.11g
       มาตรฐาน IEEE 802.11g เป็นมาตรฐานที่ได้รับการพัฒนาขึ้นมาทดแทนผลิตภัณฑ์ที่รองรับมาตรฐาน IEEE 802.11b โดยยังคงใช้คลื่นความถี่ 2.4 GHz แต่มีความเร็วในการรับ - ส่งข้อมูลเพิ่มขึ้นอยู่ที่ระดับ 54 Mbps หรือเท่ากับมาตรฐาน 802.11a โดยใช้เทคโนโลยี OFDM บนคลื่นวิทยุและมีรัศมีการทำงานที่มากกว่า IEEE 802.11a พร้อมความสามารถในการใช้งานร่วมกันกับมาตรฐาน IEEE 802.11b ได้ (Backward-Compatible)  เพียงแต่ว่าความถี่ 2.4 GHz ยังคงเป็นคลื่นความถี่สาธารณะอยู่เหมือนเดิม ดังนั้นจึงยังมีปัญหาเรื่องของสัญญาณรบกวนจากอุปกรณ์ที่ใช้คลื่นความถี่เดียวกันอยู่ดี

IEEE 802.11h
        มาตรฐานที่ออกแบบมาสำหรับผลิตภัณฑ์เครือข่ายไร้สายที่ใช้งานย่านความถี่ 5 กิกะเฮิรตซ์ให้ทำงานถูกต้องตามข้อกำหนดการใช้ความถี่ของประเทศ ในทวีปยุโรป

IEEE 802.11i
       เป็นมาตรฐานในด้านการรักษาความปลอดภัย ของผลิตภัณฑ์เครือข่ายไร้สาย โดยการปรับปรุงMAC Layer เนื่องจากระบบเครือข่ายไร้สายมีช่องโหว่มากมายในการใช้งาน โดยเฉพาะฟังก์ชันการเข้ารหัสแบบ WEP 64/128-bit ซึ่ง ใช้คีย์ที่ไม่มีการเปลี่ยนแปลง ซึ่งไม่เพียงพอสำหรับสภาพการใช้งานที่ต้องการ ความมั่นใจในการรักษาความปลอดภัยของการสื่อสารระดับสูง มาตรฐาน IEEE 802.11i จึงกำหนดเทคนิคการเข้ารหัสที่ใช้คีย์ชั่วคราวด้วย WPA, WPA2 และการเข้ารหัสในแบบAES (Advanced Encryption Standard) ซึ่งมีความน่าเชื่อถือสูง

IEEE 802.11k
        เป็น มาตรฐานที่ใช้จัดการการทำงานของระบบ เครือข่ายไร้สาย ทั้งจัดการการใช้งานคลื่นวิทยุให้มีประสิทธิภาพ มีฟังก์ชันการเลือกช่องสัญญาณ การโรมมิงและการควบคุมกำลังส่ง นอกจากนั้นก็ยังมีการร้องขอและปรับแต่งค่าให้เหมาะสมกับการทำงาน การหารัศมีการใช้งานสำหรับเครื่องไคลเอนต์ที่เหมาะสมที่สุดเพื่อให้ระบบ จัดการสามารถทำงานจากศูนย์กลางได้

IEEE 802.1x
       เป็นมาตรฐานที่ใช้งานกับระบบรักษาความปลอดภัย ซึ่งก่อนเข้าใช้งานระบบเครือข่ายไร้สายจะต้องตรวจสอบสิทธิ์ในการใช้งานก่อน โดย IEEE 802.1x จะใช้โพรโตคอลอย่าง LEAP, PEAP,
 EAP-TLS, EAP-FAST ซึ่งรองรับการตรวจสอบผ่านเซิร์ฟเวอร์ เช่น RADIUS, Kerberos เป็นต้น

มาตรฐาน IEEE 802.11N
       มาตรฐาน IEEE 802.11N (มาตรฐานล่าสุดเป็นมาตรฐานของผลิตภัณฑ์เครือข่ายไร้สายที่คาดหมายกันว่า จะเข้ามาแทนที่มาตรฐาน IEEE 802.11a, IEEE 802.11b และ IEEE 802.11g ซึ่ง
มาตรฐาน 802.11N

มาตรฐาน IEEE 802.11N
        โดยจะมีความเร็วอยู่ที่ 300 Mbps หรือเร็วกว่าแลนแบบมีสายที่มาตรฐาน 100 BASE-TXนอกจากนี้ยังมีระยะพื้นที่ให้บริการกว้างขึ้น โดยเทคโนโลยีที่ 802.11N นำมาใช้ก็คือเทคโนโลยี 
MIMO ซึ่งเป็นการรับส่งข้อมูลจากเสาสัญญาณหลายๆ ต้น พร้อมๆ กัน ทำให้ได้ความเร็วสูงมากขึ้นและยังใช้คลื่นความถี่แบบ Dual Band คือ ทำงานบนย่านความถี่ทั้ง 2.4 GHz และ 5 GHz 

IEEE 802.3


IEEE 802.3

Ethernet Network (IEEE 802.3)

·   หลักการพื้นฐานและความเป็นมาของ IEEE 802.3
·   การทำงานและหน้าที่ของ MAC ในรูปแบบ CSMA/CD
·   การเชื่อมต่อและชนิดของเครือข่าย Ethernet

หลักการพื้นฐานและความเป็นมา
     มาตรฐาน IEEE 802.3 ออกแบบมาสำหรับระบบเครือข่ายเฉพาะบริเวณแบบ CSMA/CD  ต้นกำเนิดของมาตรฐานนี้มาจากระบบอะโลฮ่า (Aloha)  ซึ่งได้รับการเพิ่มขีดความสามารถโดยบริษัทXerox  เริ่มมาจากบริษัท Xerox ได้สร้างระบบเครือข่ายเชื่อมต่อคอมพิวเตอร์ 100 เครื่องในบริษัท โดยมีความยาวของเครือข่ายได้ถึง 1 กิโลเมตร และมีอัตราในการส่งข้อมูลถึง 2.94 Mbps ระบบนี้เรียกว่า อีเทอร์เน็ต (Ethernet)
การนำระบบอีเธอร์เน็ตมาใช้งานนั้นประสบผลสำเร็จเป็นอย่างมาก บริษัท Xerox , DEC (Digital Equipment Corporation, Ltd.) และ Intel Corp ได้ร่วมกำหนดมาตรฐานอีเธอร์เน็ตที่ความเร็ว 10 Mbps ซึ่งเป็นพื้นฐานของ 802.3  
     ข้อแตกต่างที่สำคัญคือ มาตรฐาน IEEE 802.3 ได้กำหนดไว้ สำหรับการสื่อสารแบบ CSMA/CDทำงานที่ความเร็ว 1 ถึง 10  Mbps บนสายสื่อสารชนิดต่างๆ  เช่น กำหนดค่าตัวแปรไว้สำหรับสื่อสารที่ความเร็ว 10 Mbps  บนสายโคแอกซ์ (Coaxial ) ขนาด 50 โอ์ห์มเท่านั้น  ค่าตัวแปรสำหรับตัวเลือกอื่นๆ ได้รับการกำหนดเพิ่มเติมในภายหลัง

IEEE 802.3 Ethernet
     สำหรับมาตรฐาน 802.3 จะอธิบายถึง LAN ทั้งหมดที่ใช้หลักการของ CSMA/CD (CarrierSense Multiple Access with Collision Detection) ที่มีอัตราการส่งข้อมูลตั้งแต่ 1 Mbps ถึง 100Mbps และใช้สายส่งชนิดต่างๆ นอกจากนี้มาตรฐาน IEEE 802.3 และอีเทอร์เน็ตยังมีบางส่วนของส่วนหัวของข้อมูล (Header) แตกต่างกันบ้าง (ฟิลด์ความยาวของ IEEE 802.3 ถูกใช้บ่งบอกชนิดของ Packet ในมาตรฐานอีเทอร์เน็ต)
     ดังนั้นจะเห็นได้ว่ามาตรฐาน IEEE 802.3 จะอธิบายถึง LAN ที่ใช้วิธีส่งข้อมูลแบบ CSMA/CDส่วนอีเทอร์เน็ตนั้นจะหมายถึงผลิตภัณฑ์ชนิดหนึ่งของแลนแบบ IEEE 802.3
     LAN แบบนี้ส่งข้อมูลโดยใช้หลักการคล้ายๆกับการสนทนาระหว่างบุคคลหลายคน หากใครต้องการพูดก็สามารถพูดออกมาได้ในจังหวะที่ไม่มีคนอื่นพูด(เงียบ) แต่ก็อาจเป็นไปได้ที่บุคคล 2 คนจะพูดออกมาพร้อมๆกัน ทำให้เกิดการชนกันของเสียงพูด เมื่อเป็นเช่นนั้นทั้งสองคนจะต้องหยุดพูดทันที แล้วรอจังหวะที่จะพูดใหม่อีกครั้ง ซึ่งหากใครพูดก่อนก็จะสามารถพูดได้ และบุคคลอื่นๆจะต้องฟังอย่างเดียว
     วิธีการรับส่งข้อมูลของแลน IEEE 802.3 ซึ่งเป็นแบบ CSMA/CD ก็ทำงานในลักษณะเดียวกัน คือ โหนดใดที่ต้องการส่งข้อมูลลงในสื่อกลางการส่งข้อมูล จะตรวจสอบดูสัญญาณในสื่อกลาง ถ้าหากสื่อกลางในการส่งข้อมูลว่างก็จะทำการส่งข้อมูลได้ทันที แต่หากโหนดตั้งแต่ 2 โหนดขึ้นไปส่งข้อมูลลงไปในสื่อกลางพร้อมๆกัน สัญญาณข้อมูลจะเกิดการชนกันขึ้น ทุกๆสถานีจะต้องหยุดการส่งข้อมูลแล้วรอเวลา ซึ่งช่วงเวลาของการรอแต่ละครั้งจะทำการสุ่มขึ้นมา (Random Time) หลังจากหมดเวลารอแล้วก็จะทำการตรวจสอบสัญญาณในสื่อกลางเพื่อส่งข้อมูลลงไปใหม่อีก
     เมื่อเกิดการชนกันของสัญญาณข้อมูลแล้ว เวลาจะถูกแบ่งออกเป็นช่องๆ (slots) แต่ละช่องมีช่วงเวลา 51.2 ไมโครวินาที (นั่นคือเวลาสถานีที่ส่งข้อมูลรู้ว่าเกิดการชนกันของข้อมูลหรือไม่ สำหรับความยาวของแลน 2,500 เมตร อัตราการส่งข้อมูล 10 Mbps) หลังจากการชนกันครั้งแรก แต่ละสถานีจะสร้างตัวเลขสุ่ม (Random) ที่มีค่า 0 หรือ 1 (เลขสุ่ม 2^1 ค่า)
     สถานีที่ได้ค่า 0 จะส่งข้อมูลออกไปในช่องเวลา 0 และสถานีที่ได้ค่า 1 จะส่งข้อมูลในช่องเวลาที่ 1 หากสองสถานีได้ค่าเลขสุ่มเดียวกันและส่งข้อมูลภายในช่องเวลาเดียวกัน จะเกิดการชนกันอีกครั้ง
     หลังจากการชนกันครั้งที่ 2 แต่ละสถานีจะสร้างตัวเลขสุ่มที่มีค่า 0,1,2หรือ 3 (นั่นคือเลขสุ่ม 2^2 ค่า) แล้วส่งข้อมูลภายในช่องเวลาของตนเอง หากชนกันอีกก็จะสร้างเลขสุ่มจำนวน 2^3 ค่า กล่าวคือหลังจากการชนกัน ครั้ง แต่ละสถานีก็จะมีการสร้างเลขสุ่มตั้งแต่ค่า 0 ถึง 2^i-1 ค่า และสถานีก็จะส่งข้อมูลภายในช่องเวลาของตนเอง กระบวนการในการแก้ไขการชนกันของข้อมูลแบบนี้เรียกว่าBinary Exponential Back off ซึ่งจะเห็นได้ว่ากระบวนการนี้ทำให้โอกาสในการที่จะเกิดการชนกันของข้อมูลมีน้อยลง เมื่อจำนวนครั้งของการชนกันของข้อมูลมากขึ้น

หลักการพื้นฐานและความเป็นมา

IEEE แบ่ง  IEEE 802.3 เป็น 2 กลุ่มคือ baseband และ broadband พิจารณาจากลักษณะของสัญญาณไฟฟ้าที่ส่งลงไปในสาย
     Baseband  ใช้สัญญาณแบบ digital สำหรับสื่อสารในสาย มี มาตรฐานคือ 10Base5,  10Base2,  10Base-T,  1Base5 และ 100Base-T
     Broadband  ใช้สัญญาณแบบ analog สำหรับสื่อสารในสาย มีมาตรฐานเดียวคือ 10Broad36



IEEE 802.3 Ethernet




การทำงานและหน้าที่ของ MAC


ส่วนประกอบของเฟรมข้อมูลของ Ethernet

     Preamble  มีความยาว 7 ไบต์ แต่ละไบต์จะมีข้อมูลเหมือนกันหมดคือ “10101010”  มีวัตถุประสงค์เพื่อให้ผู้รับได้มีโอกาสรู้และเทียบสัญญาณนาฬิกาของตนเองกับผู้ส่งให้ตรงกัน
     Start of frame  มีความยาว 1 ไบต์  (10101011)  สำหรับบอกเครื่องรับ ระบุจุดเริ่มต้นของเฟรม  โดยไบต์ถัดจากนี้เป็นต้นไป คือ ข้อมูล

การทำงานและหน้าที่ของ MAC
     Source  address and Destination address คือ ที่อยู่ของผู้ส่ง และที่อยู่ของผู้รับ มีขนาดอย่างละ 6 ไบต์       IEEE มีหน้าที่ในการกำหนดที่อยู่สากล (global address) ซึ่งมีขอบเขตการใช้งานได้ทั่วโลก
     Length มีความยาว 2 ไบต์ ใช้บอกความยาวของข้อมูลมูลจริงที่ถูกใส่มาในเฟรมนั้น มีค่าต่ำสุดเป็น 0 ไบต์ และสูงสุดไม่เกิน 1,500 ไบต์ มาตรฐาน 802.3 กำหนดให้ทุกเฟรมจะต้องมีความยาวไม่น้อยกว่า 64 ไบต์  หากข้อมูลจริงมีความยาวไม่ถึง 64 ไบต์  จะใช้ส่วน pad เพิ่มเติม
     Pad  มีไว้สำหรับเติมข้อมูลหลอก (dummy) เพื่อให้มีขนาดของเฟรมไม่น้อยกว่า 64 ไบต์
     Checksum   มีขนาด 4 ไบต์  มีไว้สำหรับการตรวจสอบความถูกต้องของข้อมูลที่รับได้  ถ้าเกิดการผิดพลาดขึ้นในระหว่างการนำส่งข้อมูลในส่วนนี้จะช่วยให้ตรวจพบความผิดพลาดนี้ได้ เช่น CRC (Cyclic redundancy)

การเชื่อมต่อและชนิดของเครือข่าย Ethernet
        คำว่า “Ethernet” นั้นอันที่จริงมีความหมายเกี่ยวข้องโดยตรงกับสายสื่อสาร  จากรูป แสดงคุณสมบัติของสายสื่อสาร 4 ชนิด ที่นิยมใช้กันทั่วไป ประเภทของสายสื่อสารที่ใช้กันทั่วไปสำหรับมาตรฐาน 802.3




การเชื่อมต่อและชนิดของเครือข่าย Ethernet
     การแบ่งเซกเมนต์ของ Ethernet



ระยะต่างๆ ของการติดตั้งเครือข่าย Ethernet จะขึ้นอยู่กับมาตรฐาน โดยประกอบด้วย
·    ระยะห่างระหว่างเครื่อง
·    ความยาวเซกเมนต์
·    ความยาวสูงสุด
·    จำนวนเครื่องสูงสุด

การเชื่อมต่อและชนิดของเครือข่าย Ethernet

·    10Base5: Thick Ethernet



10Base5: Thick Ethernet
·    แต่ละเซกเมนต์ยาวไม่เกิน 500 เมตร
·    ความยาวรวมทุกเซกเมนต์ไม่เกิน 2500 เมตร
·    มีจำนวนเครื่องสูงสด 200 เครื่องในแต่ละเซกเมนต์ และทั้งหมดไม่เกิน 1000 เครื่อง
·    ใช้สาย RG-8 เป็นสายหลักของเซกเมนต์
·    การต่อไปยังเครื่องใช้ Transceiver ต่อออกจากสายหลัก หรือเรียกอุปกรณ์เหล่านี้ว่า Medium Attachment Unit (MAU)
·    ใช้สาย AUI ต่อจาก MAU ไปยังเครื่องคอมพิวเตอร์

10Base2: Thin Ethernet


10Base2: Thin Ethernet
·    แต่ละเซกเมนต์ยาวไม่เกิน 185 เมตร
·    ใช้สาย RG-58 เป็นสายหลักของเซกเมนต์
·    การต่อไปยังเครื่องใช้  BNC-T connector และต่อตรงเข้ากับแผ่นวงจรเครือข่ายของเครื่องคอมพิวเตอร์

10Base-T: Twisted-Pair Ethernet


10Base-T: Twisted-Pair Ethernet
·    สายแต่ละเส้นที่ต่อออกจากอุปกรณ์กระจายสัญญาณยาวไม่เกิน 100 เมตร
·    ใช้สาย UTP เป็นสายหลักของเซกเมนต์
·    เข้าหัวสายด้วยหัวต่อ RJ-45

1Base5: StarLAN


·    เป็นผลิตภัณฑ์ของ AT&T
·    มีความเร็ว 1 Mbps
·    เพิ่มขนาดของเครือข่ายแบบ Daisy chain
·    ใช้สาย UTP

Fast Ethernet (IEEE 802.3u)
·          เนื่องจากในปัจจุบันมัลติมีเดียได้มีการใช้งานกันมาก จึงมีความต้องการเครือข่ายความเร็วสูงในการเชื่อมโยงคอมพิวเตอร์เข้าด้วยกัน กลุ่มคณะทำงานของ IEEE จึงตัดสินใจที่จะปรับปรุงมาตรฐาน 802.3 ให้สามารถ รับส่งข้อมูลด้วยความเร็วสูงขึ้น ซึ่งกลายเป็นมาตรฐานที่เรียกว่า 802.3ซึ่งเรียกกันโดยทั่วไปว่า Fast Ethernet        
·         Fast Ethernet  อีเทอร์เน็ตรูปแบบหนึ่งที่มีความเร็วสูงถึง 100 Mbps รูปแบบของเฟรมข้อมูล หรือการควบคุมการชนกันของข้อมูลไม่มีการเปลี่ยนแปลงไปจากอีเทอร์เน็ตปกติ เพียงแต่ลดเวลาการส่งข้อมูลของแต่ละบิตจาก 100    นาโนวินาที เป็น 10 นาโนวินาที จึงทำให้อัตราการส่งข้อมูลสูงขึ้น 10 เท่าจากเดิม

Fast Ethernet (IEEE 802.3u)
·          เป็น Ethernet ความเร็ว 100 Mbps
·         มีขนาดเฟรมน้อยที่สุด 72 Bytes
·         ใช้ Topology แบบ Star
·         มี 3 มาตรฐานย่อย คือ

 - 100Base-TX  ใช้สาย UTP แบบ CAT-5 หรือ STP จำนวน 2 คู่
 - 100Base-FX  ใช้สายใยแก้วนำแสง มีระยะทางไม่เกิน 2000 เมตร
 - 100Base-T4  ใช้สาย UTP แบบ CAT-3 จำนวน คู่


Gigabit Ethernet (IEEE 802.3g)
·    เป็น Ethernet ความเร็ว 1000 Mbps
·   ใช้ Topology แบบ Star
·    มี 4 มาตรฐานย่อย คือ

-  1000Base-T    ใช้สาย UTP มีระยะสาย 25 เมตร
-  1000Base-CX  ใช้สาย STP มีระยะสาย 25 เมตร
-  1000Base-SX  สัญญาณแสงแบบ Short-wave Laser มีระยะสาย 550 เมตร ใช้สายใยแก้วนำแสงแบบ multimode
-  1000Base-LX สัญญาณแสงแบบ Long-wave Laser มีระยะสาย 550 เมตร สำหรับสายใยแก้วนำแสงแบบ multimode  และระยะสาย 5000 เมตร สำหรับสายใยแก้วนำแสงแบบsingle mode